Proof of Concept Investigation of Active Velcro For Smart Attachment Mechanisms

Diann Brei, PhD., Assistant Professor Joseph Clement, PhD. Pre-Candidate

The University of Michigan
Department of Mechanical Engineering
and Applied Mechanics

Motivation

Smart Attachment Mechanism

Locomotion along host satellite

Shape control for large deployable objects

Dr. Diann Brei and Joseph Clement

Active Velcro for Autonomous Satellite Docking

Goal: Develop an active surface capable of autonomously docking two orbiting satellites with precise position and orientation control.

Potential Benefits

Micro-Satellite

- reduced cost / weight
- reduced volume
- reduced complexity (navigation, guidance, homing, etc)

Host Satellite

- mission adaptability
- extended service life
- maintenance/repair facilitation
- module upgrade ability

Active Velcro Overview

- The two surfaces passively *latch* on to each other like Velcro in contact.
- The SMA activated prongs on the active velcro surface inch the microsatellite along the surface of the host satellite to dock.

SMA Actuated Active Velcro Surface*

Flexure Mechanism Close-up

*Retention topology omitted for clarity

Dr. Diann Brei and Joseph Clement

Local Prong Operation

- Activating a single SMA wire causes the three adjacent prongs to bend inward toward the center of the grouping.
- When adjacent SMA wires are activated, the resultant (←) prong motion creates a path for the advancing post. □□□□

Component vectors resulting from

System Operation

Position 1 Unactivated surface

Activated row of SMA wires pushes post into next position

Mid-Translation 2-3 Position 3
A different row of SMA wires is activated to advance post into next position

Dr. Diann Brei and Joseph Clement

Large-Scale Prototype

Step Size: 15 mm

Linear Speed: 1.5 - 15 mm/s

Input Power (per step): 3.3 W

Demonstrated Translation: 1 Post : 8 steps

3 Posts : 2 steps

Topology Goals

Passive engagement / Active disengagement

Minimum insertion force / Maximum retention force

Dr. Diann Brei and Joseph Clement

Retention Topology Concepts

Guidance

Retention

Dr. Diann Brei and Joseph Clement

Stereolithography Topology Prototypes

Sphere Prongs

Tetrahedron Prongs

Bulb Prongs

Sphere/Tetrahedron Posts

Bulb Post

Inserted Configuration

Topology Experimental Study Results

• Lessons Learned:

- <u>Sphere</u>: provides low engagement forces at the cost of reduced retention force
- <u>Tetrahedron:</u> excellent engagement capabilities but poor retention force
- <u>Bulb:</u> provides good balance of engagement and retention capabilities

Disengagement

Engagement

	Engagement	Disengagement Force
	Force (N)	(N)
Sphere	4.7	6.9
Tetrahedron	2.9 / 22.6	1.8 / 9.9
Bulb	8.6	10.1

Small-Scale Prototype

Step Size: ~ 6 mm

Linear Speed: 0.6 - 6 mm/s

Input Power (per step): 2.3 W

Demonstrated Translation

Dr. Diann Brei and Joseph Clement

*Accomplishments

Initial concept generation

- Several unique concepts were generated
- An active material selection process was performed
- Designs were initially modeled based on buckling loads, actuator force/deflection criteria, power requirements and failure mechanisms
- Down selection to final design with developed evaluation metrics

A simple large-scale proof-of-concept prototype

- Constructed with off-the-shelf components (~ 11x11x14 cm)
- In initial tests, prototype demonstrated planar translation

*Accomplishments Continued

A topology study was conducted

- Engagement, retention and required translation forces may be tailored independently
- Small changes in the surface finish (burrs) have been demonstrated to significantly increase retention forces

Reduced-scale stereolithography prototypes have been constructed

- Varied engagement and retention forces through connection topology alterations
- One piece flexure mechanism and structural backbone
- In initial tests, prototype demonstrated planar translation

Patent filed and pending

Schedule

Dr. Diann Brei and Joseph Clement

Technology Transfer and Potential Customers

Space Structures

- Preliminary discussions with Honeywell on commercialization and licensing initiated
- XSS-11 is being explored as a possible experimental satellite platform to test servicing capabilities on the experimental satellite
- Potential use for course-accuracy docking on Orbital express to save on guidance and control complexity when plugging in orbital replacement units

Potential Markets

- Manufacturing
 - assembly and precision connections
 - precision shaping and placement
 - fixturing and alignment
 - reconfigurable tooling
- Telecommunications and Optics
 - fiber optic placement, connection, and alignment
 - precision lens/mirror alignment and shape control
- Medicine
 - bio attachments
 - sutures
 - alignment of prosthetics
 - assistive surgical tools

